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A time-averaged length scale can be defined by a pair of successive turbulent-velocity
derivatives, i.e. [dnu(x)}dxn]«}[dn+"u(x)}dxn+"]«. The length scale associated with the
zeroth- and the first-order derivatives, u«}u!

x
, is the Taylor microscale. In isotropic

turbulence, this scale is the average length between zero crossings of the velocity signal.
The average length between zero crossings of the first velocity derivative, i.e. u!

x
}u!

xx
,

can be reliably obtained by using the peak-valley-counting (PVC) technique. We have
found that the most probable scale, rather than the average, equals the wavelength at
the peak of the dissipation spectrum in a plane mixing layer (Zohar & Ho 1996). In this
study, we experimentally investigate the generality of applying the PVC technique to
estimate the dissipation scale in three basic turbulent shear flows: a flat-plate boundary
layer, a wake behind a two-dimensional cylinder and a plane mixing layer. We also
analytically explore the quantitative relationships among this length scale and the
Kolmogorov and Taylor microscales.

1. Introduction

Turbulent shear flows are known to contain eddies of various scales ranging from
organized large-scale to random small-scale structures. It has been shown (Tennekes &
Lumley 1972) that the Navier–Stokes equations derived for steady homogeneous pure
shear flow can be reduced by using the Reynold decomposition to
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This equation states that the rate of turbulent energy production by Reynolds stresses
equals the rate of viscous dissipation. Furthermore, scaling arguments suggest that the
production, i.e. extraction of kinetic energy from the mean flow, enters the turbulence
mainly at large scales, but the viscous dissipation of turbulent energy occurs mainly at
small scales. The existence of the energy-containing eddies within the shear region was
recognized by Crow & Champagne (1971) as well as Brown & Roshko (1974). The
development of a mixing layer is dominated by two sets of large organized structures :
the primary, spanwise vortices and the streamwise, counter-rotating vortex pairs
(Roshko 1981). These coherent structures control the mass and momentum transfer
across the shear region and consequently the growth of the layer (Winant & Browand
1974). For more than a decade, the spanwise vortical structures have been studied in
detail by many investigators in various turbulent shear flows: mixing layers (Ho &
Huang 1982), wakes (Wygnanski, Champagne & Marasli 1986) and boundary layers



136 C.-M. Ho and Y. Zohar

(Brown & Thomas 1977). In addition to the spanwise vortical structures, Konrad
(1976) reported the existence of streamwise streaks in a mixing layer. In general, the
spanwise structures are formed as a result of essentially a two-dimensional instability
mechanism (Monkewitz & Huerre 1982), while the streamwise structures seem to result
from three-dimensional instability of the spanwise vortical structures (Pierrehumbert
& Widnall 1982). Since instability mechanisms are highly sensitive to initial conditions,
the evolution of these structures can be manipulated by external excitation (Ho &
Huang 1982). For surveys of the research on large-scale structures one may consult the
reviews by Cantwell (1981) for bounded and by Ho & Huerre (1984) for free shear
layers. It is well established now that the irrotational fluid is engulfed into the shear
layer by the evolving organized structures, thus extracting energy from the mean flow,
but the mixing process of the engulfed fluid takes place on smaller scales. Indeed, the
energy of the large eddies cannot grow indefinitely and (1.1) has indicated that it stays
bounded due to the viscous dissipation of kinetic energy by very fine eddies.

Initially laminar shear layers eventually become turbulent in a process known as the
small-scale transition. The energy cascade model argues that the energy is progressively
transferred from the large scales where it is injected to the smaller size eddies (Lesieur
1987). Analysis of the vorticity equation under the same conditions of (1.1) leads to the
approximation (Tennekes & Lumley 1972)
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This implies that the energy is transferred to the small scales by vortex straining,
stretching or compression, and the dissipation rate of kinetic energy is proportional to
the mean-square of the vorticity fluctuations. Liu (1981) showed that when the large-
scale disturbance reaches its maximum, there is a significant energy transfer from the
mean flow to the fine-scale motion. However, the exact mechanism by which the small
scales are generated is not known yet. Until the mid 1960s, the fine-scale activity was
extensively studied, theoretically and experimentally, utilizing traditional statistical
methods only (Hinze 1975). This was the result of the complicated nature of and the
difficulties encountered in detecting fine eddies. Nevertheless, the important role of
these dissipative eddies in the mixing process was demonstrated by Briedenthal (1981),
who reported that the small-scale transition is highly correlated with a sharp increase
in the mixedness of the shear layer. Major progress in data-acquisition techniques
coupled with significant advances in understanding large-scale eddies has opened new
possibilities for studying the fine-scale activity. Huang (1985) and Hsiao (1985)
developed a new scheme, peak-valley counting (PVC), for the direct detection of the
small-scale structures, which was further improved by Zohar (1990). Huang (1985)
reported that the small-scale activity in a plane mixing layer starts during the vortex
merging and appears in the new vortex core, in the tested Reynolds number range.
Huang & Ho (1990) found that the small-scale transition in their mixing layer started
after the first spanwise vortex merging at the streamwise vortex cores. These studies
seem to suggest that the small eddies in free-shear flows are generated as a result of the
strain field, which is developed due to the interaction between the spanwise and the
streamwise vortices (Ho & Huerre 1984). Likewise, Acarlar & Smith (1987) observed
that in a boundary layer the lift-up of the streamwise vortices by the spanwise vortical
structures may lead to the bursting phenomenon, which is associated with fine-scale
production. Moser & Rogers (1993) reported that the transition process in a temporal
mixing layer is associated with intense vortex stretching developed during vortex
merging. Indeed, in an earlier numerical study, Brachet et al. (1983) showed that a
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single large-scale structure subject to only a straining field can break down to smaller
scales, and they speculated that it may be due to the vortex straining mechanism.

Zohar & Ho (1996) studied the small-scale activity in a plane mixing layer utilizing
the PVC technique. They found that the most-probable length scale of the streamwise
velocity fluctuations is equal to the scale of maximum dissipation. Foss (1994) applied
the PVC technique to all three velocity components in a mixing layer, and found that
the most-probable length scale is the same in all directions. A similar finding was
reported by Zohar et al. (1990) who applied a two-dimensional version of the PVC
technique to the velocity field of a numerically computed, temporal mixing layer. These
results suggest that the most-probable length scale of the velocity fluctuations, as
determined by the PVC technique, is equal to the length scale of the dissipation process
in turbulent shear flows in general. The purpose of this paper is therefore to check the
validity of this hypothesis in various turbulent flows.

2. Experimental arrangements

In the present study, experiments were carried out in three types of turbulent flows:
two free shear flows, namely a plane mixing layer and a plane wake, and one wall-
bounded shear flow, a plane boundary layer. It was established that all the flows were
fully developed under the conditions of measurements. The time-averaged velocity, U,
and the fluctuating streamwise velocity, u(t), were measured by a single-wire probe of
2±5 µm in diameter. The 0±5 mm long hot wire was made of Pt-Rd. The constant-
temperature anemometer had a flat frequency response up to about 30 kHz. The
analog output of the anemometer was digitized with a personal-computer-based data
acquisition system. The 12-bit A}D converter allowed a maximum sampling rate of
1 MHz. The actual sampling time was adjusted for each flow: 40, 20 and 6 µs for the
boundary layer, wake and mixing layer respectively. For calibration, the hot wire was
placed in the free stream, well outside the shear layer, along with a Pitot tube. The
anemometer output voltage and the output of the pressure transducer connected to the
Pitot tube were recorded. A fourth-order polynomial was fit to seven calibration
velocities, using the least-squares method, to determine the five coefficients.

2.1. Boundary layer

A closed-return wind tunnel, details of which were reported by Blackwelder &
Haritonidis (1983), was used for the boundary-layer study. The test section had a cross-
sectional area of 60¬90 cm# and was 6 m long. A 90¬600 cm# flat plate was vertically
mounted in the test section. The leading edge of the flat plate was rounded and a
trailing-edge flap was installed to control the stagnation point at the leading edge. The
turbulence level within the test section was less than 0±05% at all free-stream velocities,
up to 18 m s−". The laminar boundary layer which developed over the flat plate was
tripped with two staggered rows of 7 mm high inverted rivets spaced 2 cm apart. The
centre of the two rows, with a streamwise separation of 2 cm, was located 45 cm
downstream from the leading edge.

The free-stream velocity was U¢ ¯ 500 cm s−", which is one of the cases reported by
Blackwelder & Haritonidis (1983). The measurements were taken at x¯ 500 cm from
the trailing edge, where a standard boundary layer was obtained as shown in figure
1(a). The transverse coordinate is normalized by the viscous length scale,
ν}uτ ¯ 0±075 mm. The friction velocity, uτ, is based on the velocity gradient at the wall,
uτ ¯ [ν(¥U}¥y)

wall
]"/#¯ 20 cm s−", and ν is the kinematic viscosity. From the mean-

velocity profile it is ascertained that the mean velocity at Y+¯ yuτ}ν¯ 15 was 12uτ.
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F 1. Shear layer mean and fluctuations velocity profiles : (a) boundary layer ; (b) wake;
(c) mixing layer.
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This criterion was used to determine the origin, y¯ 0. Once the fully developed state
of the boundary layer was established, the small-scale activity was then examined at the
10 positions marked in figure 1(a).

2.2. Wake

The wake was generated in a closed-return wind tunnel which is described by
Motohashi & Blackwelder (1983). A 1±3 cm thick aluminium plate, 550 cm long and
133 cm wide was mounted horizontally on the upper side of the octagonal cross-
section. The wake generator used in this study was a circular cylinder made of steel.
The cylinder, 8 mm in diameter, spanned the test section and was mounted under
adequate tension to ensure that it was straight and rigid.

The free-stream velocity was U¢ ¯ 1300 cm s−" with turbulence level of about 0±1%.
Wygnanski et al. (1986) reported that the wake obeys the similarity scaling for
x" 400d, where d¯ 2θ is the cylinder diameter and θ is the momentum thickness.
Therefore, the small-scale activity in the wake was examined at x¯ 400d for which the
mean and r.m.s. velocity profiles are shown in figure 1(b). The 10 positions where the
small-scale activity was examined are also marked. The transverse coordinate is
normalized by the distance from the centre to where the mean velocity is equal to half
of the wake deficit, b(x), such that Y*¯ y}b(x).

2.3. Mixing layer

The mixing layer was studied in an open loop wind tunnel ; its turbulence properties
were documented by Browand & Latigo (1979). A 3¬3 m# stilling chamber was
divided into two independent sections by a 10 cm thick splitter plate. At the end of the
contraction section, a steel plate was attached to the end of the splitter plate to divide
the test section into two streams, each 30±5 cm deep and 91±4 cm wide. In order to
obtain different velocities in the two streams, a cloth mesh was placed over the upper
entrance to the stilling chamber to produce the required pressure drop for a desired
velocity ratio. The experiments were conducted with laminar boundary layers on both
sides of the splitter plate ; the turbulence level in the vicinity of the trailing edge was
about 0±3%. The free-stream velocities were U

"
¯ 2±75 m s−" and U

#
¯ 12.65 m s−",

with spanwise uniformity to within 0±35% of the maximum velocity in either stream.
The velocity ratio is therefore R¯ (U

#
®U

"
)}(U

#
U

"
)¯ 0±64. The streamwise

coordinate is normalized by the initial instability wavelength, Λ
!
¯ 3 mm, and the

velocity ratio, R, such that X*¯Rx}Λ
!
. The cross-stream coordinate is normalized by

the local velocity thickness, Y*¯ y}δ(x), where δ(x)¯ (U
#
®U

"
)}(¥U}¥y)

max
. Zohar &

Ho (1996) reported that for X*" 6 the velocity profiles at these conditions become
self-similar. Therefore, measurements were made further downstream at X*¯ 8,
where the shear layer was fully developed. The mean and r.m.s. velocity profiles are
shown in figure 1(c), where the locations selected for the small-scale study are marked
as well.

3. A summary of the peak-valley-counting (PVC) technique

Velocity traces consist of low-frequency high-amplitude fluctuations pertaining to
the passage of the coherent structures and high-frequency low-amplitude fluctuations
which are assumed to be the signature of the fine eddies. Clearly, one can gain more
information about the smaller scales by correctly resolving these high-frequency
fluctuations. Consequently, a new peak-valley-counting technique was developed to
identify every local maximum and every local minimum associated with the high-
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frequency fluctuations. The PVC algorithm is designed to generate a reliable pulse train
corresponding to the local extrema in the velocity signal recorded by a hot wire, thus
providing an efficient method for detecting fine structures within the limits of the
hot-wire anemometry.

3.1. Small-scale resolution

The hot-wire anemometer has a finite spatial resolution and a finite time response.
Therefore, two parameters had to be adjusted to ensure the registration of most of the
small scales by the hot wire. The frequency response of the anemometer is flat up to
about 30 kHz. The highest most-probable frequency of the small-scale activity, in the
present study, was found in the mixing layer. Thus, by fixing the mean speed at 7±7 m
s−", the most probable frequency, 12 kHz, was about 2±5 times smaller than the high
end of the flat frequency response. The mixing layer at these conditions also contained
the smallest most-probable length scale of the fine-scale activity, 0±65 mm. Hence, the
length of the wire used for the detection of small scales was about 0±5 mm. The
sampling time was selected such that at least five data points were recorded per one fine
eddy of the most-probable scale found in each flow. Thus, it was possible to distinguish
between fine eddies with slightly different sizes, enabling the construction of a
histogram for the small-scale activity in the shear flows. As a result, the measuring
system was indeed able to resolve the majority of the fine-scale eddies examined in this
study, and in particular the most-probable ones.

3.2. Noise contamination

The PVC scheme is very sensitive to noise contamination, which is inherent in every
signal-processing technique manifested at the high frequency end of the spectrum. A
procedure of five steps was developed to deal with this problem. Although the
procedure is not unique, it does follow some physical reasoning as discussed next.

In the first step of the algorithm, a pulse of (1) is assigned to every local maximum
and (®1) to every local minimum. Digitizing an analog signal introduces a finite-
amplitude resolution by the A}D converter. Consequently, many peaks and valleys
contain more than one data point of identical local extremum value. Therefore, it is not
sufficient to decide upon a peak or valley simply by comparing it with its two adjacent
data points. The separation between the examined point and the reference points
increases iteratively until it is possible to sort out the character of that point. This step
is successful in identifying almost all the extrema. However, it also introduces a large
number of false peaks and valleys, as clearly seen in the pulse train in figure 2(a). Since
one and only one peak can exist between a successive pair of valleys, and vice versa,
the second step is designed to enforce that. Thus, in the case of two or more successive
pulses with similar sign, those with smaller absolute value of the raw signal are set to
zero. If the absolute value is also identical, the pulse closest to the mid-interval is kept
and the rest are set to zero. This simple step eliminates more than 50% of the false
pulses in most cases, as evident in figure 2(b).

The following steps are designed to examine a structure, a peak-valley pair, rather
than a single pulse, peak or valley. In the third step, the differences between the level
of each peak (or valley) and the two valleys (or peaks) next to it are calculated. The
centre pulse is then set to zero, along with one of the two next to it as in the previous
step, if both differences are smaller than a certain threshold. The threshold depends on
the noise level introduced by the recording system: hot-wire anemometer, amplifier and
A}D converter. In the present study, this threshold is found to be about 1% of the
amplitude associated with an average coherent structure. After this step (see figure 2c)
less than 20% of the pulses are false, and they seem to concentrate in regions of the
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F 2. The pulse train of peaks and valleys after : (a) the 1st ; (b) 2nd; (c) 3rd; (d ) 4th; and (e) 5th
stage of the PVC algorithm. (Velocity time record of 75 ms in the boundary layer at Y+ ¯ 5.)

signal where the slope is very shallow. The next step is therefore designed to improve
the pulse train in those regions. Each extremum point is re-examined by comparing it
with the two points which are separated by a period larger than one most-probable
scale, i.e. seven data points or more. If the peak or valley is clear, i.e. greater or smaller
than the two reference points, the pulse survived. Otherwise, both differences between
the extremum and the two reference points are calculated, and the pulse is set to zero
if both are smaller than the previous threshold. After this step (figure 2d ) most of the
remaining false pulses (about 10%) are due to the digitizing process. Hence, a
combined threshold condition for frequency and amplitude is introduced to further
improve the pulse train. Since at least three data points are required to resolve a
structure and the digitized signal is accurate to within one bit at best, these limits are
chosen for the combined threshold. Each peak-valley pair with separation time less
than three sampling time units and amplitude difference less than two bits was
eliminated. Finally, after applying these five steps, the number of false peaks and
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valleys was reduced to about 5% of the remaining pulses. Consequently, the final pulse
train as shown in figure 2(e) seems to be a reliable tool for studying the fine-scale
activity in turbulent shear flows.

3.3. The PVC histogram and scale

Zohar & Ho (1996) combined both the PVC and the phase-averaging techniques for
registering the occurrence of every peak-valley pair in the velocity signal, in order to
study the properties of the fine-scale structures such as length scales and strain rates.
They reported that the most-probable length scale of the streamwise velocity
fluctuations, in a plane mixing layer, is equal to the scale of maximum dissipation. It
is true that while the small-scale activity is three-dimensional in nature, the velocity
signal recorded by a hot wire is one-dimensional. That prompted Zohar et al. (1990)
to apply a two-dimensional version of the PVC technique to the velocity field of a
temporal mixing layer, computed numerically by Rogers & Moser (1992). They found
again that the two scales corresponding to the maximum of both PVC histograms, the
two- and the one-dimensional, are equal to the maximum of the dissipation spectrum.
Furthermore, Foss (1994) recorded all three velocity components in a mixing layer, and
reported that the corresponding microscales in all directions were about the same.
Therefore, the length scale of the streamwise velocity fluctuations in all three flows will
be determined using the one-dimensional PVC technique.

The PVC algorithm has been applied to the streamwise component of the velocity
vector measured by a hot-wire anemometer. Thus, a pulse train of (®1}1)
corresponding to the local minima}maxima in the velocity signal is constructed, as
shown in figure 2(e). It is assumed that the time interval between each peak-valley pair
(or valley-peak) represents half the period of that particular event. These time intervals
are therefore doubled to yield the period of the different events, T

i
, as well as their

frequency, f
i
¯ (T

i
)−". Now, a frequency histogram can be constructed for every

measurement point in each flow. It was found that the histograms reach an asymptotic
shape for a population over 10% events. Figure 3 shows these histograms for the
boundary layer, wake and mixing layer normalized by the highest probability P

m
( f ).

It is evident that in all three flows the fine-scale activity encompasses a wide range of
frequencies. However, a clear peak can be seen in figure 3 for each histogram;
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fζ ¯ 2 kHz for the boundary layer, fζ ¯ 6 kHz for the wake and fζ ¯ 12 kHz for the
mixing layer.

Taylor’s hypothesis is used to estimate length scales, l, in a given flow from time
scales or frequencies, T or f, utilizing the appropriate convection velocity, U

c
, in the

transformation l¯U
c
T¯U

c
}f. In the mixing layer, the convection velocity of the

dissipative eddies, as measured by Wygnanski & Fiedler (1970), is used. For the wake,
the phase speed of the high-wavenumber range is chosen following Mattingly &
Criminale (1972). In the boundary layer, the convective speed of the small scales is the
local mean velocity as found by Favre, Gaviglio & Dumas (1967). The corresponding
wavenumber is then calculated from the length scale, k¯ 2π}l. The PVC length scale,
ζ, is defined as the scale for which the histogram attains its peak. Thus,

ζ¯
U

c

fζ
(3.1)

is the most probable scale of the fine-scale activity, which is larger than the average
scale. This PVC scale is found to be 2±1 mm in the boundary layer at Y+¯ 70, 2±5 mm
in the wake at Y*¯ 1, and 0±65 mm in the mixing layer at Y*¯ 0.

Essentially, the identification of local maxima}minima in the velocity signal is
identical to finding the zero crossings in the signal first derivative with a
negative}positive slope. Indeed, the role that the zero crossing plays in the physical
description of turbulence has already been recognized (Sreenivasan, Prabhu &
Narasimha 1983). However, physical measurements always contain some level of
noise. Differentiating a measured signal with its noise content to obtain the zero
crossings can lead to significant errors. Consequently, the latter approach yields
inferior results as will be demonstrated.

4. Zero-crossing length scales in turbulent velocity signals

For a stationary random function y¯ y(x), Rice (1945) proved the result that the
zero-crossing frequency of y(x), N

!
, with positive (or negative) slope, is given by
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if y(x) and y
x
(x)¯dy}dx both have Gaussian distributions and are statistically

independent. Similarly, Longuet-Higgins (1958) pointed out that the stationary-point
frequency of y(x),N

"
, which is the zero-crossing frequency of y
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where y
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(x)¯d#y}dx#. Later, Ylvisaker (1965) proved that 2πN
!
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x
}y« for any

continuous stationary Gaussian process y(x) with finite (2πN
!
)−" without invoking

statistical independence between y(x) and y
x
(x) ; y« and y!

x
are the r.m.s. of y and y

x
.

Liepmann (1949) argued that if y(x) was the turbulent velocity fluctuation, u(x), then
N

!
could provide an indication of the viscous dissipation, which is proportional to

u!
x
¯ u«}λ. Thus, assuming normal distributions for u(x) and u

x
(x), the Taylor

microscale, λ, should be equal to (2πN
!
)−". However, turbulence is inherently non-

Gaussian, and Rice’s results cannot automatically be expected to hold. Figures
4(a)–4(c) compare the distributions of u, u

x
, and u

xx
, respectively, in the mixing layer

with normal distributions having the same standard deviations. These figures
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qualitatively show that the distributions are not Gaussian. A measure to quantify how
close a process y is to being Gaussian is its flatness factor, y%¯ (y#)#, which is exactly
3 for a normal distribution. Figure 5 shows the flatness factor in the mixing layer as
a function of the derivative exponent, n, i.e. dnu(x)}dxn. The flatness factor increases
with n from 2±7 for P(u) to 5±6 for P(u

xx
). Similar results were reported by Batchelor

& Townsend (1949) suggesting that the higher the derivative the further the resulting
signal deviates from a normal distribution.

Nevertheless, the measurements of Liepmann, Laufer & Liepmann (1951) in
isotropic turbulence have shown that λ is equal to (2πN

!
)−" to within 20%. The general

explanation for this finding has been that the one-point p.d.f. of the velocity in
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isotropic turbulence is not too far from being Gaussian. Indeed, figure 4(a) shows that
P(u) for which the flatness factor is 2±7 is very close to a normal distribution. However,
similar findings were reported by Laufer (1950) for the streamwise velocity fluctuations
in a two-dimensional channel flow, where the one-point p.d.f.’s are strongly non-
Gaussian. Therefore, it seems plausible that Rice’s result might have a much more
general applicability than it has been proved for.

4.1. Zero crossings of the streamwise �elocity fluctuations

Sreenivasan et al. (1983) carried out measurements in two boundary layers, a plane
wake behind a circular cylinder and a two-dimensional channel. They showed that
zero-crossing measurements can be severely affected by factors like the dynamic range
of the signal, noise content and the cut-off frequency: that is, when these factors are
not taken into account, misleading conclusions can be easily drawn. Sreenivasan et al.
(1983) argued that if the signal is passed through a low-pass filter set at a frequency f

c
,

the zero-crossing frequency, N
!
, is expected to increase initially with f

c
and then attain
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a plateau, representing the true value. Further increase in the value of f
c
increases the

noise content ; therefore at substantially higher settings of f
c
, the number of zero

crossings starts increasing again.
In this study, the zero-crossing approach is compared with r.m.s. calculations. The

Taylor microscale, λ, is first determined by calculating the ratio u«}u!
x
, or rather

U
c
u«}u!

t
, after passing the signal through a low-pass filter with different cut-off

frequencies. The corresponding wavenumber, k
x
¯ 2πu!

t
}U

c
u«, is plotted in figure 6. In

all three shear layers, k
x

approaches an asymptotic value. This asymptotic value is
defined here as the Taylor wavenumber, kλ. The corresponding length scale, λ¯ 2π}kλ,
is the Taylor microscale : 4±95 mm for the boundary layer, 5±3 mm for the wake and
2±1 mm for the mixing layer. Figure 6 shows that in each case k

x
reaches the asymptotic

value of kλ when the cut-off frequency is higher than 10% of the sampling frequency,
f
s
. This indicates that the Taylor microscale, estimated directly from the recorded

signal and its derivative, is not very sensitive to noise contamination.
Next, the average zero-crossing frequency of the streamwise velocity signal, N

!
, is

obtained. The Taylor wavenumber is now used to normalize the zero-crossing
wavenumber, k

!
¯ 4π#N

!
}U

c
, as shown in figure 7. A clear plateau is evident for each

curve as expected when the signal-to-noise ratio is reasonably good. The plateau value
of k

!
}kλ ¯ (u«}u!

t
) (2πN

!
) is 0±9 for the mixing layer, 0±95 for the wake and 1±05 for the

boundary layer. These values are consistent with the results of Sreenivasan et al. (1983)
who obtained values of 0±9 in a plane boundary layer and 1±05 in a plane wake. So, the
Taylor microscale can be estimated from the zero crossings of the turbulent velocity
fluctuations according to Rice’s formula although the signal is clearly non-Gaussian.
However, we are interested in the dissipation length scale, and it is well known that the
Taylor microscale is always larger than the dissipation length scale. Therefore, Rice’s
formula will now be applied to the stationary points (maxima and minima) of the
signal to obtain another scale, which is expected to be smaller than the zero-crossing
length scale.

4.2. Estimation of u!
x
}u!

xx

Similarly to the Taylor microscale, one can define a scale based on the ratio between
the r.m.s. of the first and the second velocity derivative, u!

x
}u!

xx
. However, as long as

the signal is differentiable, there is an infinite number of length scales which can be
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defined by any pair of successive derivatives, i.e. [dnu(x)}dxn]}[dn+"u(x)}dxn+"].
Therefore, the introduction of another length scale has to be supported by physical
arguments before attempting to calculate it. Two approaches can be considered in
examining the scale u!

x
}u!

xx
: the auto-correlation and the auto-spectrum functions.

The velocity auto-correlation function in isotropic turbulence depends only on the
separation distance, r :

u(x) u(xr)¯ u«#f(r) (4.3)
and

0 u!
x

u!
xx

1#¯
u
x
u
x

u
xx

u
xx

¯®
f ii

!

f iv

!

(4.4)

where f ii

!
and f iv

!
are, respectively, the second and the fourth derivative of f(r) at r¯ 0.

The function f(r) can be expanded as follows:

f(r)¯ f
!


f ii

!

2
r#

f iv

!

24
r%… (4.5)

and so f ii

!
¯®λ−#. The ratio u!

x
}u!

xx
is now given by

u!
x

u!
xx

¯ 0®f ii

!

f iv

!

1"/#¯ 0 λ#

λ%f iv

!

1"/#¯
λ

(λ%f iv

!
)"/#

; (4.6)

f iv

!
is unknown since there is no analytical solution for f(r). However, the significance

of the term λ%f iv

!
¯λ#}(u!

x
}u!

xx
)#, can be seen in the vorticity equation derived by

Batchelor & Townsend (1947) :

dω«#
dt

¯®
7

3o5
ω«$λ$K iii

!
®

14

3o5
ω«$

λ%f iv

!

Reλ

, (4.7)

where ω« is the r.m.s. of the total vorticity and u«$K iii

!
¯ (¥u}¥x)$ is the triple correlation

function. This equation states that the rate of change of ω«# is controlled by the balance
between production of vorticity due to vortex staining and dissipation of vorticity due
to viscosity. Thus, the scale u!

x
}u!

xx
is found to be explicitly related to the viscous

dissipation of vorticity, and so it is worth comparing it with the other scales in
connection with the dissipation of kinetic energy in turbulent flows.

An attempt to solve (4.7) will inevitably lead to the closure problem, where there are
more unknowns than equations. Taylor (1938) was the first to try to estimate f iv

!
from



148 C.-M. Ho and Y. Zohar

his measurements of the shape of the correlation function, f(r). He obtained the value
of λ%f iv

!
¯ 12±5 in grid-turbulence flow with Reλ of about 60. Later, Batchelor &

Townsend (1947) measured each of the terms in (4.7) and suggested that at large
Reynolds numbers λ%f iv

!
¯ 0±2Reλ. Hence, using the relationship between the Taylor

scale and Kolmogorov scale, η :λ}η¯ 15"/%Re"/#λ , (4.6) becomes

u!
x

u!
xx

¯
λ

(λ%f iv

!
)"/#

¯
λ

(0±2Reλ)"/#
¯

15"/%η

0±2"/#
¯ 4±401η. (4.8)

This result, u!
x
}u!

xx
¯ 4±4η, suggests the existence of an intermediate length scale,

smaller than the Taylor and larger than the Kolmogorov scale, which is relevant to the
dissipation process. Therefore, it is of interest to estimate this length scale correctly,
and the auto-spectrum function is examined next.

In isotropic turbulence

u(x) u(xr)¯&
¢

!

F
uu

(k) eikrdk (4.9)

Hence,

0 u!
x

u!
xx

1#¯
u
x
u
x

u
xx

u
xx

¯
&

¢

!

k#F
uu

(k) dk

&
¢

!

k%F
uu

(k) dk

¯
&

¢

!

k#E(k) dk

&
¢

!

k%E(k) dk

(4.10)

and the task is to evaluate both integrals. The upper integral, !k#E(k) dk, is related to
the dissipation rate, ε,

ε¯ 2ν& k#E(k) dk (4.11)

where the dissipation rate is equal to ε¯ 15ν(u!
x
)#. On the other hand, !k%E(k) dk is

related to !k#E(k) dk as follows (Lesieur 1987) :

d

dt&
¢

!

k#E(k, t) dk¯ω
i
ω
j

¥u
i

¥x
j

®2ν&
¢

!

k%E(k, t) dk. (4.12)

For the shear flows considered in this study, the production and dissipation of
enstrophy are almost in equilibrium, therefore (Monin & Yaglom 1975)

2ν&
¢

!

k%E(k, t) dkEω
i
ω
j

¥u
i

¥x
j

¯®$&

#
(u

x
)$¯®$&

#
S [(u

x
)#]$/#, (4.13)

where S is the skewness derivative, and is of the order of ®0±5 (Lesieur 1987). Hence,

u!
x

u!
xx

¯
ε"/#

035

4 1
"/# 0 ε

15ν1
$/%

¯
4"/#15$/%

35"/#
0ν$ε 1

"/%

¯ 2±577η. (4.14)

The auto-spectrum then yields a scale u!
x
}u!

xx
of about 2±6η. Clearly, both the auto-

correlation and the auto-spectrum approaches predict that the scale u!
x
}u!

xx
is greater

than the Kolmogorov scale, but the value of the ratio of the two scales is not
satisfactory.

4.3. Stationary points of the streamwise �elocity fluctuations

The stationary points of a signal are the zero crossings of its derivative. Here, the time
derivative of the streamwise velocity signal, u

t
(t), is obtained by central differencing.

The resulting signal, u
t
, is passed through a low-pass filter. Again, two length scales can
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be calculated for each cut-off frequency: one from the ratio u!
x
}u!

xx
and the other from

the zero-crossing frequency, N
"
. The ratio u!

x
}u!

xx
is estimated by U

c
u!
t
}u!

tt
. The

corresponding wavenumber, k
xx

, normalized by the PVC wavenumber, kζ ¯ 2π}ζ, is
plotted in figure 8 as a function of the cut-off frequency, f

c
. Unlike the asymptotic

behaviour observed for k
x

in all three cases (figure 6), k
xx

is continuously increasing
with f

c
. This suggests that the signal-to-noise ratio is quite poor. This is expected since

further differentiation of a noisy signal can only amplify the noise content. A similar
pattern can be observed in figure 9, where the stationary-point wavenumber,
k
"
¯ 4π#N

"
}U

c
, is plotted as a function of the cut-off frequency; no clear plateau can

be observed in any of the three curves. Sreenivasan et al. (1983) have already pointed
out that if the signal-to-noise ratio is low, so that the ‘gap’ between the high-frequency
content of the signal and the noise is small, the plateau region diminishes in extent.
They further argued that even if the noise is marginally higher than is acceptable in
many cases, this plateau may completely disappear. So, it seems that differentiating a
turbulent velocity signal, even with good signal-to-noise ratio (about 0±05 in the wake),
emphasizes the noise content to such an extent that neither direct measurement of the
zero-crossing frequency, N

"
, nor the calculation of the ratio u!

x
}u!

xx
can yield a reliable

value of the length scale. Nevertheless, figures 8 and 9 show that both k
xx

}kζ and k
"
}kζ

are of order one. This indicates that it may be possible to estimate the dissipation
length scale if the noise problem can be alleviated. Hence, one still would like to explore
other alternatives to estimate the ratio u

t
}u

tt
in order to assess the validity of Rice’s

results, and this ratio in turn may provide a good estimate for the dissipation length
scale. This indeed has been accomplished by developing the PVC technique and
applying it to the streamwise velocity fluctuations.

5. The universality of the PVC length scale

The PVC histograms can be used to construct p.d.f.’s for the activity of the small
scales using Taylor’s hypothesis, k¯ 2πf}U

c
. The p.d.f.’s, P(k}kζ), are obtained by

normalizing the corresponding histograms such that !P(k}kζ) d(k}kζ)¯ 1, as shown in
figure 10(a–c) for the three shear layers. The abscissa is normalized by the wavenumber
of the peak frequency, kζ, so that the maximum of the p.d.f. appears at k}kζ ¯ 1.
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F 10. Fine-eddy p.d.f.’s for : (a) boundary layer ; (b) wake; (c) mixing layer.

5.1. Spatial dependence of the small-scale acti�ity

Huang & Ho (1990) used the PVC technique to register the instant of occurrence of the
local maximum or minimum velocity in relation to the large scales in order to map out
the spatial distribution of the small-scale activity inside the coherent structures. They
found that the fine eddies initially appear at the core of the streamwise vortices.
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F 11. A comparison between the p.d.f.’s of the shear flows and log-normal distributions:
^, boundary layer at Y+ ¯ 70 (σ¯ 0±9) ; D, wake at Y*¯ 1 (σ¯ 0±7) ; *, mixing layer at Y*¯ 0
(σ¯ 0±8).

Similarly, Ferre et al. (1990) reported that intense fine-scale activity was detected in the
cores of the large double-roller eddies of a plane turbulent wake. However, since all
three flows under the current investigation are plane shear layers, it is expected that the
statistical properties will be independent of the spanwise direction. Zohar & Ho (1996)
confirmed that downstream of the small-scale transition region in a plane mixing layer
the fine-scale activity becomes two-dimensional. Thus, only measurements taken at the
mid-spanwise plane, z¯ 0, of the shear layers (wind tunnels) are discussed in this
paper. Both, the Taylor and the Kolmogorov microscales, λ and η, are known to be
weak functions of the turbulent Reynolds number, Reλ ¯ u«λ}ν (Batchelor 1953).
Consequently, they grow very slowly with the streamwise distance. Likewise, Zohar &
Ho (1996) reported that similar downstream dependence for the fine-eddy length scale,
ζ, was observed in the fully developed region of a plane mixing layer. Therefore, one
streamwise location was selected for each shear layer to study the small-scale activity,
as described in §2.

The fine-eddy length scale is expected to vary with the cross-stream direction, since
toward the edges of the shear layers the turbulence intermittency decreases as reported
by Wygnanski & Fiedler (1970). Zohar & Ho (1996) reported that the most-probable
length scale at both edges of the plane mixing layer was about 50% greater than the
scale at the centre of the layer. However, when the fine-scale p.d.f.’s are normalized by
the local most-probable wavenumber, kζ(y)¯ 2π}ζ(y), they collapse onto a single
curve, as shown in figure 10(a–c) for each of the three shear layers. This seems to
suggest the existence of a self-similar state for the small-scale activity.

5.2. Uni�ersality of the PVC length scale

The collapse of all p.d.f.’s onto a single curve in each of the three flows when properly
normalized gave hope for the existence of a universal distribution of the fine-scale
eddies in all turbulent shear flows. Therefore, the p.d.f.’s of the three shear layers are
compared in figure 11, where only one curve representing each layer is plotted. These
are the distributions obtained at cross-stream locations deep inside the shear layers :
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Y+¯ 70 for the boundary layer, Y*¯ 1 for the wake and Y*¯ 0 for the mixing layer,
in order to minimize boundary effects. Moreover, since the fine-eddy wavenumber
cannot have negative values and subsequently P(k}kζ)¯ 0 for (k}kζ)% 0, a log-normal
distribution function is fitted for each case. The function is given by

P(k}kζ)¯
1

(2π)"/#σ(k}kζ)
exp 9®1

2 0
ln (k}kζ)®µ

σ 1#: , (5.1)

where µ and σ are the mean and the standard deviation of ln (k}kζ). Selecting µ¯σ#

ensures that dP(k}kζ)}d(k}kζ)¯ 0 is at k}kζ ¯ 1. It is clear that although the peak
distribution appears at k}kζ ¯ 1, due to the normalization, the value of this peak is
different for each case. The exact value of the p.d.f.’s maximum is controlled by the
standard deviation, σ. The best log-normal fit is obtained for σ¯ 0±7 in the wake,
σ¯ 0±8 in the mixing layer and σ¯ 0±9 in the boundary layer. These are rather
interesting results indicating a non-monotonic dependence of σ on the turbulent
Reynolds number, Reλ, since Reλ ¯ 115, 305 and 120 in the wake, mixing layer and
boundary layer, respectively. Previous studies, e.g. Monin & Yaglom (1975), suggested
that the dissipation rate has a log-normal probability distribution on similar grounds
to those mentioned above. Furthermore, they assumed that the distribution variance
is given by Aβ ln (Λ}η), where Λ is the scale of the energy-containing eddies, η is the
Kolmogorov microscale, and β is the universal intermittency exponent. Since
Λ}ηCRe$/#λ , one would expect the standard deviation of the dissipation-rate
distribution to increase with Reλ and similarly σ of the fine-scale eddy distribution.
However, this universal behaviour becomes more apparent in flows with a very high
Reynolds number, where the separation between the large- and the small-scale
structures is large. Unfortunately, the turbulent Reynolds number in the flows tested
here is modest, 100–300. Consequently, the small-scale activity may not be completely
independent of the large-scale structures. Indeed, A is a parameter which depends on
the large-scale motion. Hence, the flow macrostructure can affect the dissipation-rate
distribution as well as the fine-scale distribution independent of Reλ. It is plausible then
that the different topology of the large-scale structures in the three shear layers, due to
the variations in the mean shear, results in a different fine-scale activity. At the
relatively low Taylor-scale Reynolds number range, we did not observe a monotonic
increase of σ with Reλ in the three shear flows. At any rate, only the mode of the p.d.f.
is important to estimate the dissipation length scale and not the entire shape.

6. The relation between PVC and classical turbulence length scales

6.1. Dissipation-spectrum estimate

The characterization of the dissipation of kinetic energy in turbulent flows requires the
estimation of the dissipation spectrum. The existence of organized structures in
turbulent shear flows casts doubt on the validity of employing conventional dissipation
estimates based on the assumption of local isotropy. Van Atta (1991) presented
experimental data supporting Kolmogorov’s hypothesis of statistical independence of
large and small scales together with local isotropy of the small scales of turbulence in
a homogeneous fluid. The working fluid in this study, air, is homogeneous and, hence,
the conventional estimates of dissipation are employed. The dissipation spectrum,
D(k), can be calculated from the three-dimensional energy spectrum, E(k), as follows
(Batchelor 1953) :

D(k)¯k#E(k). (6.1)
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F 12. Energy, E(k), and dissipation, D(k), spectra for : (a) boundary layer at Y+ ¯ 70;
(b) wake at Y*¯ 1; (c) mixing layer at Y*¯ 0.

Unfortunately, the three-dimensional energy spectrum cannot be measured directly.
However, the one-dimensional energy spectrum, F

uu
(k

x
) can be estimated from the

velocity fluctuations, u(t). The measuring sensor, i.e. a hot wire, has a finite spatial
resolution. Therefore, the estimated energy contained within scales smaller than the
sensor size has to be corrected. The procedure suggested by Wyngaard (1968) was
adopted in this study to better estimate the one-dimensional energy spectrum.
Assuming local isotropy, the three-dimensional energy spectrum can be calculated
from the corrected one-dimensional spectrum (Batchelor 1953) :

E(k)¯k$
d

dk 9
1

k 0
d

dk
F
uu

(k)1: (6.2)

The pair of spectra, E(k) and D(k), estimated for the boundary layer at Y+¯ 70, for the
wake at Y*¯ 1 and for the mixing layer at Y*¯ 0, are shown in figure 12(a–c)
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respectively; each spectrum is normalized by its maximum value. The peak of the
energy spectrum, where dE(k)}dk¯ 0, corresponds to the scale of the large energy-
containing eddies. Similarly, the peak of the dissipation spectrum, where dD(k)}dk¯ 0,
corresponds to the scale of maximum dissipation. Thus, we define this scale as the
dissipation length scale with the corresponding wavenumber, k

d
, and the problem is

how to evaluate it.
6.2. Dissipation length scale

So far, either the Kolmogorov microscale, η, or the Taylor microscale, λ, has been
regarded as the dissipation length scale. An estimate of the dissipation scale can be
obtained from the analysis of the structure function. In the viscous region, r' η,
friction has a dominant effect on the relative motion. The velocity can be expanded in
a Taylor series, u(xr)¯ u(x)(¥u}¥x) rO(r#), resulting in (Monin & Yaglom 1975)

[u(xr)®u(x)]#E (¥u}¥x)# r# ; r' η. (6.3)

On the other hand, the Kolmogorov second hypothesis in the inertial subrange,
η' r'Λ, leads to (Monin & Yaglom 1975)

[u(xr)®u(x)]#ECε#/$r#/$ ; η' r'Λ, (6.4)

where ε is the dissipation rate and Λ is the scale of the energy-containing eddies. If the
dissipation scale is identified as the cross-over scale of the structure function, namely
the distance r at which the inertial-range and Taylor-series versions of the structure
function agree, then in isotropic turbulence

Cε#/$r#/$¯ (du}dx)# r#¯ (ε}15ν) r# (6.5)

where ν is the kinematic viscosity. With universal value CE 2 (Townsend 1976),

r
cross-over

¯ 30$/%(ν$}ε)"/%¯ 12±819η. (6.6)

So r
cross-over

is about 13 times the Kolmogorov scale. Indeed, it is well known that the
Kolmogorov microscale estimates the smallest scale of dynamical importance in fluid
flows. Thus, it presents a cut-off scale for the dissipation spectrum, which is typically
about one order of magnitude smaller than the scale of maximum dissipation.
However, it is of interest to know the exact ratio between the two scales. If one assumes
Pao’s spectrum for the energy (Pao 1965), then the dissipation spectrum can be
analytically expressed as

D(k)¯ 2ανε#/$k"/$ exp [®$

#
α(kη)%/$] , (6.7)

where α is a constant of order 1. For α¯ 1±5, the peak of the dissipation spectrum
occurs at k

d
}kη ¯ 0±19, where kη ¯ 2π}η. On the other hand, Zohar & Ho (1996)

obtained in a turbulent mixing layer k
d
}kη ¯ 0±1. Champagne (1978) reported a similar

ratio of 0±1 in a turbulent wake and a turbulent jet. Zohar & Ho (1996) found that the
PVC scale is equal to the scale of maximum dissipation in a mixing layer. Hence, this
relationship is tested in all three shear flows.

6.3. The PVC length scale as a dissipation scale

In order to check the relationship between the PVC length scale and the dissipation
process, the dissipation spectra have to be calculated. The required spectra were
estimated from the energy spectra as described above in a few locations across the three
shear layers. The dissipation wavenumber, k

d
, corresponding to the peak of the

spectrum can be determined for each point in the flow. The wavenumber corresponding
to the PVC scale, kζ, was also calculated at the same locations based on the PVC
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histogram. The ratio kζ}k
d

is plotted in figure 13 as a function of the cross-stream
location, Y+ for the boundary layer, Y* for the wake and mixing layer. It is clear that
inside the shear layers ζ is equal to the scale of maximum dissipation. Only at the edges,
rY*r" 1 or Y+" 10$, does the ratio kζ}k

d
deviate somewhat from unity. This should

be expected since at the edges of the shear layers the turbulent intermittency decreases.
Now it is interesting to use kζ to normalize the dissipation spectrum. Figure 14
compares three spectra representing the three shear flows. The peak is indeed around



156 C.-M. Ho and Y. Zohar

0.8

0.6

0.4

0.2

0 100 200 300 400 500

Rek

f/
k;

 g
/f

f
k =

10

151/4Re1/2
k

g/f = 0.1

F 15. Reλ dependence of the ratios between the microscales : ^, η}ζ ; D, ζ}λ.

k}kζ ¯ 1. Moreover, when the dissipation spectra are normalized by the total
dissipation, !D(k) d(k), such that the area enclosed by each spectrum is unity, all three
dissipation spectra collapse together reasonably well. Thus it seems that the PVC
technique yields the appropriate length scale for the dissipation process in turbulent
shear layers.

6.4. The relationship among turbulent microscales

The relationship among the PVC scale ζ, the Kolmogorov microscale η, and the Taylor
microscale λ is next examined. Figure 15 shows the ratio between the scales, ζ}λ and
η}ζ, as a function of the turbulent Reynolds number, Reλ ¯λu«}�. Unfortunately, the
range of Reλ which can be investigated in this work is limited by the available facilities
and is very small, 100–300, less than one order of magnitude. Nevertheless, the ratio
between the Kolmogorov scale, η, and the PVC scale, ζ, does not seem to depend on
Reλ, at least within the limited range tested here. It is reasonable to expect that all the
scales characterizing dissipative eddies would be proportional to each other. Therefore,
the relationship between ζ and η can be written as

ζ¯ aη, (6.8)

where a should be a universal constant independent of Reλ. Figure 15 shows that the
best fit of (6.8) to the present data yields a¯ 10. In contrast, the relationship between
the PVC scale and the Taylor scale λ should not be independent of Reλ, because λ is
not a scale characterizing fine eddies. The functional relationship between ζ}λ and Reλ

could be obtained as follows:

ζ

λ
¯

ζ

η

η

λ
¯

10

15"/%Re"/#λ

. (6.9)

This formulation, shown in figure 15, agrees well with the present data as ζ}λ decreases
from about 0±45 for Reλ ¯ 115 and 120 in the wake and the boundary layer,
respectively, to about 0±3 for Reλ ¯ 305 in the mixing layer.

7. Conclusions

The peak-valley-counting technique (PVC) has been developed to trace individual
small-scale structures in turbulent flows. A detailed discussion of this technique is
included in this paper. The main advantage in using the PVC technique is to alleviate
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the noise contamination in the high-frequency range associated with high-order
velocity derivatives. With this approach, it is possible to obtain a reliable most-
probable length scale between zero-crossings of the first velocity derivative, ζ. This
length scale is about equal to the wavelength at the peak of the dissipation spectrum.
We have experimentally shown the generality of this property in three basic turbulent
shear flows: a plane wake, a flat-plate boundary layer and a plane mixing layer. The
ratio between ζ and the Taylor scale, λ, depends on the turbulent Reynolds number
while the ratio between ζ and the Kolmogorov scale, η, is nearly constant. The
proportionality constant between ζ and η was experimentally found to be about 10,
different from the constant determined by analytical means.

We appreciate the many insightful comments made by the reviewers. Their
comments have been incorporated in the present version. This work is supported by a
contract from the Office of Naval Research.
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